FX-100 serles

Related Information
\square

PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS
SAFETY
COMPONENTS
PRESSURE SENSORS
INDUCTIVE PROXIMITY SENSORS
PARTICULAR USE SENSORS

SENSOR
OPTIONS
WIRE-SAVING
SYSTEMS
MEASUREMENT
SENSORS
STATIC CONTROL
DEVICES

LASER
MARKERS

Guide

Fibers

FT / FD / FR
Fiber Sensor
Amplifiers
FX-100
FX-300
FX-410
FX-311
FX-11A

FX-301-F

Other Products

Related Information \square Glossary of terms / General precautions...P.983~/P.986~ \quad Fiber selection.................................P. P. 63~

NEW

Conforming to
EMC Directive

Taking fiber sensors to the next level

Setup is made simple, using a dual digital display

The dual digital display allows users to check both the threshold value and incident light intensity at the same time, allowing for clear and intuitive control of the sensor's functions. The threshold value can be adjusted simply by pressing the Δ (UP) key or the ∇ (DOWN) key, so that the output operation can be controlled with high precision, directly from the RUN mode.

Commercially-available connectors are used so that lead time and spare part numbers can both be reduced

The connectors used are commercially-available connectors, so that processing costs and lead time required for carrying out processing after purchase of the sensors can be greatly reduced. The same connection parts as the DP-100 series of digital pressure sensors and the PM-64 series of micro photoelectric sensors can be used.

Commercially-available press-fit connectors are used, so that the processing costs for connection cables can be greatly reduced.

Connection with a commercially-available connector

Conventional (cable type)

(1) Sensor purchase and preparation
(2) Harness processing by outside order

From now on (built-in connector type)

- Harness processing by outside order

(1) Sensor purchase and preparation

Saving-space with a width of 9 mm 0.354 in

The sensor is very slim, yet equipped with a dual digital display. Both space saving and ease of use have been achieved.

Equipped with a four-chemical emitting element

A stable amount of emitted light is ensured due to control of the aging of the emitting element to the maximum limit.

A three level navigation structure provides easy access to the sensor's functions, from basic to advanced

Setting details are divided into three levels for simple operation, so that settings for normal operation are made in "RUN mode", basic settings are made in "SET mode", and advanced functions are set in "PRO mode". This makes configuration much easier to understand and carry out.

RUN mode
Functions used during normal operation [Function table] -Changing threshold values \cdot Key lock - Quick settings \cdot Code settings SET mode

Functions used when initializing the
sensor and carrying out maintenance [Function table]

- Teaching •L-ON / D-ON setting
- Timer setting
- Attenuation function
- Interference prevention function

PRO mode
Equipped with a full complement of digital fiber sensor functions [Function table]

- Shift • External input • Reset
- GETA • ECO • Display reversing
- Surplus value display \cdot Copy
- Threshold tracking

Quick code input function [RUN mode]

Sensor settings can be made simply by selecting preset values.

Quick setting numbers (summary)

No.	Output operation	Light-emitting amount selection	Timer
-80-	Dark-ON	OFF	None
-9:-	Dark-ON	ON	None
-82-	Dark-ON	OFF	OFF-delay 10 ms
-83-	Dark-ON	ON	OFF-delay 10 ms
- 做	Light-ON	ON	ON-delay 40 ms
- 11 -	Light-ON	OFF	ON-delay 40 ms
- 12-	Light-ON	ON	ON-delay 10 ms
- 13-	Light-ON	OFF	ON-delay 10 ms

Smooth support via telephone [RUN mode]

Confirmation can be carried out smoothly via telephone by simply quoting numbers. This can be of great assistance when dealing with foreign country customers.

FIBER
SENSORS
LASER
SENSORS
PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS
SAFETY
COMPONENTS
PRESSURE
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
WIRE-SAVING
SYSTEMS
MEASUREMENT
SENSORS
STATIC CONTROL
DEVICES
LASER
MARKERS

Selection Guide
Fibers
FT / FD / FR

Amper senso
Amplifiers
FX-100

Products
PHOTOELECTRIC
SENSORS

Limit teaching function

This carries out teaching and sets threshold values only when no object is present (when the incident light amount is stable). This is useful when sensing objects if there are other objects in the background and when sensing minute objects. Teaching can also be carried out using external input.

Threshold tracking function [PRO mode]

This function seeks changes in the light emitting amount resulting from changes in the environment over long periods (such as dust levels), so that the incident light intensity can be checked at desired intervals and the threshold values can be reset automatically.

GETA function [PRO mode]

The display value for the incident light intensity can be offset by the desired value (target value). The target value can be set to between 0 and 2,000 (in increments of 100). For example, if the incident light intensity is 1,500 and the target value is set to 2,000 , then " 2,000 " will appear in the digital display.

Variations in the amount of light received

Attenuation function [SET mode]

If the light receiving level becomes saturated when sensing over short distances or when sensing transparent objects or minute objects, the light emitting amount can be reduced so that stable sensing can be provided without needing to change the response time.

Interference prevention function [SET mode]

(FX-101ם: Interference prevention for up to 3 units $)$
FX-102a: Interference prevention for up to 4 units
The emission frequencies can be set separately for each unit in order to avoid interference. The emitted light flashes while setting is in progress, so that you can see at a glance which fiber sensor is currently being set. In addition, this interference prevention is not done by using optical communication. This means that there is no need to place the amplifiers close together like there was before, and so the amplifiers can be set up apart from each other.

* When the emission frequencies are changed, the response times will also change.
 at the same frequency.

Multi-function external input [PRO mode]

Settings such as emission halt, limit / auto teaching and ECO settings can be carried out via external input.

External input lines are
equipped as standard

Alert function [PRO mode]

When the amount light received approaches the threshold value, the display can be made to blink in order to alert the operator.
<When using at a shift amount of 20% and a threshold value of 1,000>
The amount of light received ranges from about 900 to 1,100 when the digital indicator flashes.

ORDER GUIDE

Amplifiers

Type	Appearance	Model No.	Emitting element	Output

Accessory

- CN-14A-C2
(Connector attached cable 2 m 6.562 ft)
* Only include cable set type

Notes: 1) The connector attached cable CN-14A-C2 is supplied with the amplifier.
2) Make sure to use the optional connector attached cable $\mathbf{C N}-14 \mathrm{~A}(-\mathrm{R})-\mathrm{C}_{\square}$ or the connector $\mathbf{C N}-14 \mathrm{~A}$, or a connector manufactured by J.S.T. Mfg. Co., Ltd. (contact: SPHD-001T-P0.5, housing: PAP-04V-S)
3) Make sure to use the optional M8 connector attached cable CN-24A-C \square.

OPTIONS

Designation	Model No.	Description	
Connector attached cable	CN-14A-C1	1 m 3.281 ft	$0.02 \mathrm{~mm}^{2}$ 4-core cabtyre cable with connector on one end Cable outer diameter: $\varnothing 3.7 \mathrm{~mm} \varnothing 0.146$ in
	CN-14A-C2 (Note)	2 m 6.562 ft	
	CN-14A-C3	3 m 9.843 ft	
	CN-14A-C5	5 m 16.404 ft	
Connector attached cable (Flexible type)	CN-14A-R-C1	1 m 3.281 ft	
	CN-14A-R-C2	2 m 6.562 ft	
	CN-14A-R-C3	3 m 9.843 ft	
	CN-14A-R-C5	5 m 16.404 ft	
M8 connector attached cable	CN-24A-C2	2 m 6.562 ft	For M8 plug-in connector type The connector on one end Cable outer diameter: $\varnothing 4 \mathrm{~mm} \varnothing 0.157$ in
	CN-24A-C5	5 m 16.404 ft	
Connector	CN-14A	Set of 10 housings and 40 contacts	
Protection cover	FC-FX-1	This protects the operating surfaces.	
Amplifier mounting bracket	MS-DIN-4	Mounting bracket for amplifier	
End plates	MS-DIN-E	When it moves depending on the way it is installed on a DIN rail, these end plates ensure that all amplifiers are mounted together in a secure and fully connected manner. Two pcs.per set	

M8 connector attached cable

- CN-24A-C

Amplifier mounting bracket

Note: The connector attached cable CN-14A-C2 is supplied with the cable set type FX-10ם(P)-CC2.

Recommended connector
Contact: SPHD-001T-P0.5, Housing: PAP-04V-S
(Manufactured by J.S.T. Mfg. Co., Ltd.)
Note: Contact the manufacturer for details of the recommended products.
Recommended crimping tool
Model No.: YC-610R
(Manufactured by J.S.T. Mfg. Co., Ltd.)
Note: Contact the manufacturer for details of the recommended products.

Connector Connector attached cable •CN-14A

- CN-14A(-R)-C \square

LIST OF FIBERS

Model No.	Sensing range (mm in) (Note 1)		Dimensions
	Standard type FX-101ם	Long sensing range type FX-102-	
FT-A8	1,500 59.055	3,500 137.795 (Note 2)	P. 106
FT-A30	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)	P. 106
FT-AFM2	28011.024	72028.346	P. 106
FT-AFM2E	2409.449	67026.378	P. 106
FT-B8	40015.748	1,150 45.276	P. 106
FT-E12	60.236	190.748	P. 106
FT-E22	150.591	602.362	P. 106
FT-FM2			P. 106
FT-FM2S	30011.811	80031.496	P. 106
FT-FM2S4			P. 106
FT-FM10L	9,300 366.141	15,000 590.550	P. 106
FT-H13-FM2	2509.843	70027.559	P. 106
FT-H20-J20-S (Note 3)			P. 107
FT-H20-J30-S (Note 3)	1355.315	42016.535	P. 107
FT-H20-J50-S (Note 3)			P. 107
FT-H20-M1	2108.268	54021.260	P. 107
FT-H20-VJ50-S (Note 3)			P. 107
FT-H20-VJ80-S (Note 3)	1505.906		P. 107
FT-H20W-M1	1003.937	30011.811	P. 107
FT-H30-M1V-S (Note 4)	1104.331	28011.024	P. 107
FT-H35-M2			P. 107
FT-H35-M2S6	17		P. 107
FT-HL80Y	99038.976	2,340 92.126	P. 107
FT-K8	1,000 39.370	3,000 118.110	P. 108
FT-KV1	1355.315	50019.685	P. 108
FT-KV8	1,000 39.370	3,000 118.110	P. 108
FT-L80Y	1,100 43.307	2,600 102.362	P. 108
FT-NFM2			P. 108
FT-NFM2S	1305.118	28011.024	P. 108
FT-NFM2S4			P. 108
FT-P2	1204.724	33012.992	P. 108
FT-P40	803.150	2409.449	P. 108
FT-P60	1305.118	30011.811	P. 108
FT-P80	2309.055	65025.591	P. 108
FT-P81X	26010.236	80031.496	P. 108

Model No.	Sensing range (mm in) (Note 1)		Dimensions
	Standard type FX-101]	Long sensing range type FX-102\%	
FT-PS1	401.575	903.543	P. 109
FT-R80	1807.087	43016.929	P. 109
FT-SFM2	30011.811	80031.496	P. 109
FT-SFM2L	76029.921	2,400 94.488	P. 109
FT-SFM2SV2	1807.087	47018.504	P. 109
FT-SNFM2	1305.118	28011.024	P. 109
FT-T80	30011.811	80031.496	P. 109
FT-V10	1,000 39.370	2,350 92.520	P. 109
FT-V22	1405.512	38014.961	P. 109
FT-V41	401.575	1204.724	P. 109
FT-V80Y	34013.386	80031.496	P. 109
FT-W4	803.150	2208.661	P. 109
FT-W8	26010.236	65025.591	P. 110
FT-WA8	1,500 59.055	3,500 137.795 (Note 2)	P. 110
FT-WA30	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)	P. 110
FT-WKV8	70027.559	2,200 86.614	P. 110
FT-WR80	2158.465	57022.441	P. 110
FT-WR80L	43016.929	1,150 45.276	P. 110
FT-WS3	1505.906	60023.622	P. 110
FT-WS4	803.150	2208.661	P. 110
FT-WS8	26010.236	65025.591	P. 110
FT-WS8L	60023.622	1,500 59.055	P. 110
FT-WV42	301.181	803.150	P. 110
FT-WZ4	2309.055	67026.378	P. 110
FT-WZ4HB	803.150	2309.055	P. 111
FT-WZ7	33012.992	1,000 39.370	P. 111
FT-WZ7HB	1907.480	58022.835	P. 111
FT-WZ8	33012.992	95037.402	P. 111
FT-WZ8E	70027.559	2,100 82.677	P. 111
FT-WZ8H	1,200 47.244	2,800 110.236	P. 111
FT-Z8	36014.173	1,000 39.370	P. 111
FT-Z8E	80031.496	1,850 72.835	P. 111
FT-Z8H	1,400 55.118	3,100 122.047	P. 111
FT-Z802Y	52020.472	3,100 122.047	P. 111

Notes: 1) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long.
3) Heat-resistant joint fibers and ordinary-temperature side fibers (FT-FM2) are sold as a set. Please refer to p.93~ for details.
4) Sold as a set comprising vacuum-resistant type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8). Please refer to p.91~ for details.

Fibers are listed in alphabetic order. Refer to p.63~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1, 2)		Dimensions
	Standard type FX-101ם	Long sensing range type FX-102ם	
FR-KV1	15 to 2000.591 to 7.874	15 to 3600.591 to 14.173	P.112
FR-KZ21	2007.874	2007.874	P.112
FR-KZ21E	2007.874	2007.874	P.112
FR-WKZ11	100 to 5503.937 to 21.654	100 to 8303.937 to 32.677	P.112

Notes: 1) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
The sensing range of FR-WKZ11 is specified for the RF-13. The sensing range of FR-KZ21, FR-KZ21E and FR-KV1 is specified for the attached reflector. The sensing ranges when using in combination with the FR-WKZ11 reflector (optional) are given in the below table.

Reflector Amplifier	FX-101ם	FX-102ם
FR-WKZ11 + RF-210	100 to 7003.937 to 27.559	100 to $1,1003.937$ to 43.307
FR-WKZ11 + RF-220	100 to $1,3003.937$ to 51.181	100 to $2,6003.937$ to 102.362
FR-WKZ11 + RF-230	100 to $2,0003.937$ to 78.740	100 to $4,0003.937$ to 157.480

2) The sensing range of FR-WKZ11 is the possible setting range for the reflector or reflective tape. The fiber can detect an object less than 100 mm 3.937 in away. However, note that if there are any white or highly-reflective surfaces near the fiber head, reflected incident light may affect the fiber head. If this occurs, adjust the threshold value of the amplifier unit before use.
The sensing range of $\operatorname{FR}-\operatorname{KZ21}(\mathrm{E})$ is the possible setting range for the reflector. However, if setting the fiber to detect objects passing within 0 to 20 mm 0 to 0.787 in from the fiber head, unstable detection may result.
The sensing range of FR-KV1 is the possible setting range for the reflector. The fiber can detect an object less than 15 mm 0.591 in away.

Reflective type \sim unf

Fibers are listed in alphabetic order. Refer to "Fiber Selection p.63~" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1, 2)		Dimensions	Model No.	Sensing range (mm in) (Note 1, 2)		Dimensions	
	Standard type FX-101-	Long sensing range type FX-102			Standard type FX-101]	Long sensing range type FX-102z		
FD-A15	1254.921	2509.843	P. 113	FD-G6	501.969	1204.724	P. 114	
FD-AFM2	1054.134	28511.220	P. 113	FD-G6X	451.772	1606.299	P. 114	
FD-AFM2E	853.346	2459.646	P. 113	FD-H13-FM2	1003.937	28011.024	P. 114	
FD-B8	1706.693	44017.323	P. 113	FD-H18-L31	0 to 100 to 0.394	0 to 250 to 0.984	P. 115	
FD-E12	3.50 .138	130.512	P. 113	FD-H20-21	903.543	28011.024	P. 115	
FD-E22	160.630	451.772	P. 113	FD-H20-M1	1204.724	30011.811	P. 115	
FD-EG1	180.709	501.969	P. 113	FD-H30-KZ1V-S (Note 3)	25 to 800.984 to 3.150	10 to 2200.394 to 8.661	P. 115	
FD-EG2	100.394	301.181	P. 113	FD-H30-L32	2 to 90.079 to 0.354	0 to 170 to 0.669	P. 115	
FD-EG3	70.276	220.866	P. 113	FD-H30-L32V-S (Note 3)	2.5 to 6.50 .098 to 0.256	0 to 110 to 0.433	P. 115	
FD-EN500S1	10.039	40.157	P. 113	FD-H35-20S	853.346	2007.874	P. 116	
FD-ENM1S1	150.591	481.890	P. 114	FD-H35-M2	752.953	28011.024	P. 116	
FD-F4	Applicable pipe diameter: Outer dia. $\varnothing 6$ to $\varnothing 26 \mathrm{~mm} \varnothing 0.236$ to $\varnothing 1.024$ in transparent pipe [PFA (fluorine resin) or equivalently transparent pipe, wall thickness 1 mm 0.039 in]		P. 114	FD-H35-M2S6			P. 116	
			FD-L4	5 to 80.197 to 0.315 (Convergent point 60.236)	1 to 170.039 to 0.669 (Convergent point 60.236)	P. 116		
			FD-L41	3 to 140.118 to 0.551 (Convergent point 80.315)	1.5 to 160.059 to 0.630 (Convergent point 80.315)	P. 116		
FD-F41	Applicable pipe diameter: Outer dia. $\varnothing 6$ to $\varnothing 26 \mathrm{~mm} \varnothing 0.236$ to $\varnothing 1.024$ in transparent pipe [PVC (vinyl chloride), fluorine resin, polycarbonate, acrylic, glass, wall thickness 1 to 3 mm 0.039 to 0.118 in]			P. 114	FD-L43	0 to 190 to 0.748	0 to 250 to 0.984	P. 116
			FD-L44		0 to 60 to 0.236	0 to 80 to 0.315	P. 116	
			FD-L44S		0 to 4.50 to 0.177	0 to 5.50 to 0.217	P. 116	
			FD-L45		0 to 400 to 1.575	0 to 500 to 1.969	P. 116	
FD-F8Y	-			P. 114	FD-L46	16 to 300.630 to 1.181	12 to 500.472 to 1.969	P. 116
FD-FM2	1003.937	41016.142	P. 114	FD-NFM2	351.378	1003.937	P. 117	
FD-FM2S	1003.937	34513.583	P. 114	FD-NFM2S			P. 117	
FD-FM2S4			P. 114	FD-NFM2S4			P. 117	
FD-G4	501.969	1204.724	P. 114	FD-P2	250.984	652.559	P. 117	

[^0]2) Please take care that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) Sold as a set comprising vacuum-resistant type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8). Please refer to p.91~ for details.

LIST OF FIBERS

Reflective type

Fibers are listed in alphabetic order. Refer to "Fiber Selection p.63~" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1, 2)		Dimensions
	Standard type FX-101]	Long sensing range type FX-102	
FD-P40	80.315	301.181	P. 117
FD-P50	451.772	1505.906	P. 117
FD-P60	451.772	1505.906	P. 117
FD-P80	903.543	2007.874	P. 117
FD-P81X	702.756	2208.661	P. 117
FD-R80	702.756	1807.087	P. 117
FD-S80	1003.937	34513.583	P. 117
FD-SFM2SV2	301.181	903.543	P. 117
FD-SNFM2	351.378	1003.937	P. 118
FD-T40	351.378	1003.937	P. 118
FD-T80	1003.937	34513.583	P. 118
FD-V41	250.984	702.756	P. 118
FD-W8	803.150	2309.055	P. 118
FD-W44	150.591	401.575	P. 118

Model No.	Sensing range (mm in) (Note 1, 2)		Dimensions
	Standard type FX-101	Long sensing range type FX-102ם	

Notes: 1) The standard sensing objects of the sensing ranges vary depending on the fibers. Refer to p.71~ for details.
2) Please take care that the sensing range of the free-cut type fiber may be reduced by 20 \% max. depending upon how the fiber is cut.
3) Sold as a set comprising vacuum-resistant type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8). Please refer to p.91~ for details.

FIBER OPTIONS

Lens (For thru-beam type fiber)
The dimensions are on p.120~

Designation		Model No.	Description				
	Expansion lens (Note 1)	FX-LE1		Increases the sensing range by 5 times or more. - Ambient temperature: $-60 \text { to }+350^{\circ} \mathrm{C}$ $-76 \text { to }+662^{\circ} \mathrm{F}$ (Note 3)	Sensing range (mm in)) [Lens on both sides]	
					Fiber Amplifier	FX-101■	FX-102■
					FT-B8	2,200 86.614	3,500 137.795 (Note 2)
					FT-FM2, FT-T80	3,000 118.110	3,500 137.795 (Note 2)
					FT-R80	1,900 74.803	3,500 137.795 (Note 2)
					FT-W8	3,000 118.110	3,500 137.795 (Note 2)
					FT-P80, FT-P60	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
					FT-P81X	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
					FT-H35-M2	2,000 78.740	3,500 137.795 (Note 2)
					FT-H20W-M1	1,300 51.181	1,600 62.992 (Note 2)
					FT-H20-M1	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
					FT-H20.V20.S, FT.H22-N30.S, FT-H20.50.S	1,000 39.370	3,500 137.795 (Note 2)
	Superexpansion lens (Note 1)	FX-LE2		Tremendously increases the sensing range with large diameter lenses. - Ambient temperature: $\begin{aligned} & -60 \text { to }+3500^{\circ} \mathrm{C} \\ & -76 \text { to }+662^{\circ} \mathrm{F} \end{aligned}$ (Note 3)	Sensing range (mm in) [Lens on both sides]		
						FX-101ㅁ	FX-102
						3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
					FT-P81X	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
					FT-H35-M2	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
					FT-H2OW-M1, FT-H20-M1	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
					FT-H13-FM2	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
						3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
	Side-view lens	FX-SV1		Beam axis is bent by 90°. - Ambient temperature: $\begin{aligned} & -60 \text { to }+300{ }^{\circ} \mathrm{C} \\ & -76 \text { to }+572{ }^{\circ} \mathrm{F} \\ & \text { (Note 3) } \end{aligned}$	Sensing range (mm in) [Lens on both sides]		
					Fiber Amplifier	FX-101■	FX-102■
					FT-B8	53020.866	1,450 57.087
					FT-FM2, FT-T80	55021.654	1,700 66.929
					FT-W8	45017.717	1,300 51.181
					FT-P80	42016.535	1,400 55.118
					FT-P60	30011.811	85033.465
					FT-P81X	55021.654	1,700 66.929
					FT-H35-M2	28011.024	80031.496
					FT-H20W-M1	1405.512	40015.748
					FT-H20-M1	28011.024	84033.071
						1505.906	41016.142
	Expansion lens for vacuumresistant fiber (Note 1)	FV-LE1			Sensing range (mm in) [Lens on both sides] (Note 4)		
					Fiber Amplifier	FX-101■	FX-102■
					FT-H30-M1V	45017.717	1,600 62.992
	Side-view lens for vacuumresistant fiber	FV-SV2		Beam axis is bent by 90°. - Ambient temperature: -60 to $+300{ }^{\circ} \mathrm{C}-76$ to $+572^{\circ} \mathrm{F}$ (Note 3)	Sensing range (mm in) [Lens on both sides] (Note 4)		
					Fiber Amplifier	FX-101■	FX-102■
					FT-H30-M1V	45017.717	1,600 62.992

Notes: 1) Be careful when installing the thru-beam type fiber equipped with the expansion lens, as the beam envelope becomes narrow and alignment is difficult. Especially when installing a fiber with many cores (sharp bending fibers and heat-resistant glass fiber), please be sure to use it only after you have adjusted it sufficiently.
2) The fiber cable length practically limits the sensing range to $3,500 \mathrm{~mm} 137.795$ in long (FT-H20W-M1, FT-P81X and FT-H20-M1: $\mathbf{1 , 6 0 0} \mathbf{~ m m ~} 62.992 \mathrm{in}$).
3) For details on the ambient temperatures for the fibers which being combined, refer to p.101~
4) The fiber cable length for the FT-H30-M1V is 1 m 3.281 ft . The sensing ranges in FX-102 \square (long sensing range type) take into account the length of the FT-J8 atmospheric side fiber.

Selection Guide
Fibers
FT/FD/FR
Fiber Sensor Amplifiers
FX-100
FX-300
FX-410
FX-311
FX-11A
FX-301-F
Other
Products

FIBER OPTIONS

Lens (For reflective type fiber)
The dimensions are on p.121~.

Designation		Model No. FX-MR1	Description				
	Pinpoint spot lens			Pinpoint spot of $\varnothing 0.5 \mathrm{~mm} \varnothing 0.020 \mathrm{in}$. Enables de - Distance to focal point: $6 \pm 1 \mathrm{~mm} 0.236 \pm 0.03$ - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to +1	ection of minute in - Applicable $8^{\circ} \mathrm{F}$ (Note 2)	bjects or small bers: FD-WG4	marks FD-G4
	Zoom lens	FX-MR2		The spot diameter is adjustable from $\varnothing 0.7$ to $\varnothing 2 \mathrm{~mm} \varnothing 0.028$ to $\varnothing 0.079$ in according to how much the fiber is screwed in. - Applicable fibers: FD-WG4, FD-G4 - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}$ -40 to $+158^{\circ} \mathrm{F}$ (Note 2) - Accessory: MS-EX-3 (mounting bracket)	Sensing range for FX-101ם (mm in) (Note 1)		
					Screw-in depth	Distance tofocal point	Spot diameter
					7 mm 0.276 in	18.50 .728 approx.	ø0.7 ø0.028
					12 mm 0.472 in	$\begin{aligned} & 271.063 \\ & \text { approx. } \\ & \hline \end{aligned}$	$\varnothing 1.2$ ø0.047
					14 mm 0.551 in	431.693 approx.	ø2.0 ø0.079
		FX-MR3		Extremely fine spot of $\varnothing 0.3 \mathrm{~mm} \varnothing 0.012$ in approx. achieved. - Applicable fibers: FD-WG4, FD-G4, FD-EG1, FD-EG2, FD-EG3, FD-G6X, FD-G6 - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}$ -40 to $+158^{\circ} \mathrm{F}$ (Note 2)	Sensing range for FX-101ם (mm in) (Note 1)		
					Fiber model No .	Distance to focal point	Spot diameter
					FD-EG3	$\begin{aligned} & 7.5 \pm 0.5 \\ & 0.295 \pm 0.020 \end{aligned}$	ø0.15 ø0.006 approx.
	Finest spot lens				FD-EG2	$\begin{aligned} & 7.5 \pm 0.5 \\ & 0.295 \pm 0.020 \end{aligned}$	$\varnothing 0.2 \varnothing 0.008$ approx
					FD-EG1	$\begin{aligned} & 7.5 \pm 0.5 \\ & 0.295 \pm 0.020 \end{aligned}$	ø0.3 ø0.012 approx.
					$\begin{array}{\|l} \hline \text { FD-WG4/G4, } \\ \text { FD-G6X/G6 } \\ \hline \end{array}$	$\begin{aligned} & 7.5 \pm 0.5 \\ & 0.295 \pm 0.020 \\ & \hline \end{aligned}$	$\begin{aligned} & \varnothing 0.5 \varnothing 0.020 \\ & \text { approx. } \end{aligned}$
	Finest spot lens	FX-MR6		Extremely fine spot of $\varnothing 0.1 \mathrm{~mm} \varnothing 0.004$ in approx. achieved. - Applicable fibers: FD-WG4, FD-G4, FD-EG1, FD-EG2, FD-EG3, FD-G6X, FD-G6 - Ambient temperature: -20 to $+60^{\circ} \mathrm{C}$ -4 to $+140^{\circ} \mathrm{F}$ (Note 2)	Sensing range for FX-101ם (mm in) (Note 1)		
					Fiber model No.	Distance tofocal point	Spot diameter
					FD-EG3	$\begin{aligned} & 7 \pm 0.5 \\ & 0.276 \pm 0.020 \end{aligned}$	$\varnothing 0.1 \varnothing 0.004$ approx.
					FD-EG2	$\begin{aligned} & 7 \pm 0.5 \\ & 0.276 \pm 0.020 \end{aligned}$	ø0.15 ø0.006 approx.
					FD-EG1	$\begin{aligned} & 7 \pm 0.5 \\ & 0.276 \pm 0.020 \end{aligned}$	$\not \subset 0.2 ø 0.008$ approx.
					$\begin{aligned} & \text { FD-WG4/G4, } \\ & \text { FD-G6X/G6 } \end{aligned}$	$\begin{aligned} & 7 \pm 0.5 \\ & 0.276 \pm 0.020 \end{aligned}$	ø0.4 ø0.016 approx.
	Zoom lens Side-view type	FX-MR5		FX-MR2 is converted into a side-view type and can be mounted in a very small space. - Applicable fibers: FD-WG4, FD-G4 - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}$ -40 to $+158^{\circ} \mathrm{F}$ (Note 2)	Sensing range for FX-101ם (mm in) (Note 1)		
					Screw-in depth	Disiance to focal point	Spot diameter
					8 mm 0.315 in	130.512 approx.	$\varnothing 0.5$ ø0.020
					10 mm 0.394 in	150.591 approx.	$ø 0.8$ ø0.031
					14 mm 0.551 in	301.181 approx.	$\varnothing 3.0$ ø0.118

Notes: 1) The sensing ranges are the values when used in combination with FX-101ם (standard type). Please contact our office for details on sensing ranges for other types of amplifier.
2) For details on the ambient temperatures for the fibers which being combined, refer to p.101~.

Type			Standard type		Long sensing range type		LASER SENSORS		
				Cable set		Cable set			
		NPN output	FX-101(-Z) (Note 4)	FX-101-CC2	FX-102(-Z) (Note 4)	FX-102-CC2	SENSORS		
	员	PNP output	FX-101P(-Z) (Note 4)	FX-101P-CC2	FX-102P(-Z) (Note 4)	FX-102P-CC2	$\begin{aligned} & \text { PMCNO } \\ & \text { PHOTO. } \\ & \text { ELLCTIL } \end{aligned}$		
Supply voltage			12 to 24 V DC $\pm 10 \%$ Ripple P-P 10% or less						
Power consumption			Normal operation: 720 mW or less (Current consumption 30 mA or less at 24 V supply voltage) ECO mode: 600 mW or less (Current consumption 25 mA or less at 24 V supply voltage)				AREA SENSORS		
Output			<NPN output type> NPN open-collector transistor - Maximum sink current: 100 mA - Applied voltage: 30 V DC or less (between output and 0 V) - Residual voltage: 1.5 V or less (at 100 mA sink current)		<PNP output type> PNP open-collector transistor - Maximum source current: 100 mA - Applied voltage: 30 V DC or less (between output and +V) - Residual voltage: 1.5 V or less (at 100 mA source current)		$\begin{aligned} & \text { SAFEPY } \begin{array}{l} \text { CWIPONENS } \end{array} \\ & \hline \text { PRESSURE } \\ & \text { SENSORS } \\ & \hline \text { INDUCTIVE } \end{aligned}$		
Output operation			Selectable either Light-ON or Dark-ON, at SET mode						
Short-circuit protection			Incorporated				PARTICULAR USE		
External input			<NPN output type> NPN non-contact input - Signal condition High: +8 V to +V DC or Open Low: 0 to +2 V DC (Source current 0.5 mA or less) - Input impedance: $10 \mathrm{k} \Omega$ approx.		<PNP output type> PNP non-contact input - Signal condition High: +4 V to +V DC (Sink current 0.5 to 3 mA) Low: 0 to +0.6 V DC or Open - Input impedance: $10 \mathrm{k} \Omega$ approx.		$\begin{aligned} & \text { SENSOR } \\ & \text { OPTIONS } \\ & \hline \text { WIRE- } \\ & \text { SAVING } \\ & \text { SYTSTEMS } \end{aligned}$		
			MEASURE- MENT						
Response time					Emission frequency 0: 250μ s or less (factory default setting) Emission frequency 1: $450 \mu \mathrm{~s}$ or less Emission frequency 2: 500μ s or less Emission frequency 3: 600μ s or less		Emission frequency 1: 2.5 ms or less (factory default setting) Emission frequency 2: 2.8 ms or less Emission frequency 3: 3.2 ms or less Emission frequency 4:5.0 ms or less		STATIC CONTROL DEVICES
Sensitivity setting			2-level teaching / Limit teaching / Full-auto teaching						
Operation indicator			Orange LED (lights up when the output is ON)						
Digital display			4 digits (green) +4 digits (red) LCD display						
Fine sensitivity adjustment function			Incorporated						
Timer function			ON-delay / OFF-delay timer, switchable either effective or ineffective [Timer period: $1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 40 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}, 500 \mathrm{~ms}, 1,000 \mathrm{~ms}$]						
Attenuation function			Incorporated Switchable either effective or ineffective						
Interference prevention function			Incorporated Emission frequency selection method (Note 2) (Functions at emission frequency 1, 2 or 3)		Incorporated				
			Emission frequency (Functions at emissi	ection method (Note 2) frequency 1, 2, 3 or 4)	Fibers				
	Ambient te	mperature			-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (If 4 to 7 units are mounted close together: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$, if 8 to 16 units are mounted close together: -10 to $+45^{\circ} \mathrm{C}+14$ to $+113^{\circ} \mathrm{F}$) (No dew condensation or icing allowed), Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$				$\begin{aligned} & \text { Fiber Sensor } \\ & \text { Amplifiers } \\ & \hline \end{aligned}$
	Ambient h	umidity	35 to 85 \% RH, Storage: 35 to 85 \% RH				FX-100		
	Ambient ill	uminance	Incandescent light: 3,000 lx at the light-receiving face				FX-300		
	Voltage wi	thstandability	$1,000 \mathrm{~V}$ AC for one min. between all supply terminals connected together and enclosure (Note 3)				FX-410		
	Insulation resistance		$20 \mathrm{M} \Omega$, or more, with 250 V DC megger between all supply terminals connected together and enclosure (Note 3)				FX-311		
	Vibration resistance		10 to 150 Hz frequency, 0.75 mm 0.030 in amplitude in X, Y and Z directions for two hours each				-11A		
	Shock res	stance	$98 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (10 G approx.) in X, Y and Z directions for five times each						
Emitting element (modulated)			Red LED (Peak emission wavelength: 632 nm 0.025 mil)				-		
Material			Enclosure: Polycarbonate, Key switch: Polycarbonate, Fiber lock lever: PBT				Products		
Connecting method			Connector (Note 4)						
Cable length			Total length up to 100 m 328.084 ft is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable.						
Weight			Net weight: 15 g approx. Gross weight: 35 g approx.	Net weight: 15 g approx. Gross weight: 75 g approx.	Net weight: 15 g approx. Gross weight: 35 g approx.	Net weight: 15 g approx. Gross weight: 75 g approx.			
Accessory			-	CN-14A-C2 (Connector atached cable, 2 m 6.562 tl long): 1 pp .	-	CN-14A-C2 (Connector attached cable, 2 m 6.562 ft long): 1 pc			

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23^{\circ} \mathrm{C}+73.4^{\circ} \mathrm{F}$.
2) When using the interference prevention function, set the emission frequencies for the amplifiers to be covered by the interference prevention function to different frequency values.
However, the interference prevention function does not operate at emission frequency 0 (factory default setting) for the FX-101(P)(-Z)/ FX-101(P)-CC2.
3) The voltage withstandability and the insulation resistance values given in the above table are for the amplifier only.
4) Connector attached cable CN-14A-C2 is not attached to the models that have no "-CC2" at the end of the model Nos.

Make sure to use the optional connector attached cable CN-14A(-R)-C or the connector CN-14A, or a connector manufactured by J.S.T. Mfg., Ltd. (contact: SPHD-001T-P0.5, housing: PAP-04V-S).
Model Nos. having the suffix "-Z" are M8 plug-in connector type. Make sure to use the optional M8 attached connector cable CN-24A-C \square.

I/O CIRCUIT AND WIRING DIAGRAMS

FX-10 $\square(-Z /-C C 2)$	Terminal arrangement diagram
I/O circuit diagram	

Connector type

	Terminal No.	Function
(1)	(1)	+V
(2)	(2)	Output
(3) ${ }^{\text {20 }}$	(3)	External input
	(4)	0 V

M8 plug-in connector type

* 1
Non-voltage contact or NPN open-collector transistor

Terminal No.	Function
(1)	+V
(2)	Output
(3)	External input
(4)	0 V

High (+8 V to +V DC, or open): Ineffective
Low [(0 to +2 V DC (source current 0.5 mA or less)]: Effective

FX-10 \square P(-ZI-CC2)

PNP output type
I/O circuit diagram

Terminal arrangement diagram

Connector type

	Terminal No.	Function
	(1)	+V
(2)	(2)	Output
(3) m	(3)	External input
\square	(4)	0 V

M8 plug-in connector type

Terminal No.	Function
(1)	+V
(2)	Output
(3)	External input
(4)	0 V

High [+4 V to +V DC (sink current 0.5 to 3 mA)]: Effective Low (0 to $+0.6 \vee \mathrm{DC}$, or open): Ineffective

SENSING CHARACTERISTICS (TYPICAL)

FT-A8					
Parallel deviation - Vertical direction					

| FT-NFM2 FT-NFM2S | Thru-beam |
| :--- | :--- | :--- |
| FT-NFM2S4 FT-SNFM2 | type |

Sensing field

FD-NFM2 FD.NFM2S FD-NFM2S4
Reilecive
FD-SNFM2 FD-T40

Sensing field

Thru-beam type

FT-P81X Thru-beam type

Parallel deviation

Sensing field

FD-P81X Reflective type

Sensing field

FD-W8 FD-WS8 FD-WT8 Reflecive type

Sensing field

FT-W8 FT-WS8 Thru-beam type

FD-G6X Reflective type
Sensing field

FD-WG4 FD-WSG4 Refiecive type

Sensing field

$\begin{array}{l}\text { Selection } \\ \text { Guide }\end{array}$
Fibers
FT/FD/FR
$\begin{array}{l}\text { Fiber Sensor } \\ \text { Amplifis }\end{array}$
FX-100
FX-300
FX-410
FX-311
FX-11A
FX-301-F

Other
FIBER
SENSORS

MICRO
PHOTO-
ELECTIC

AREA
SENSORS

SAFEEV
COMPONTSTS

PRESSURE
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTCULAR
USE
SENORS

SENSOR
options

SAVING

SYSTEMS
MEASURE-
MENT
SENSORS
STATIC
CONIROL
DEVICES
${ }^{\text {LASARR }}$

Products

PRECAUTIONS FOR PROPER USE
Refer to p.986~ for general precautions, and to the "Operation Guide" or "SUNX website"

- Never use this product as a sensing device for personnel protection.
- In case of using sensing devices for personnel protection, use products which meet laws and standards, such as OSHA, ANSI or IEC etc., for personnel protection applicable in each region or country.

Using in combination with the FX-300 / FX-400 series

- The FX-100 series does not use the horizontal connectors that are used with the FX-300 / FX-400 series. Please note that horizontal connection cannot be performed using a connector attached cable. In addition, the optical communication function is not equipped on the FX-100 series, so it is unable to perform interference prevention for use with the FX-300 / FX-400 series. If using the FX-100 series together with the FX-300 /
FX-400 series side-by-side, please set the same models together in groups.

Mounting

<When using a DIN rail>

How to mount the amplifier

(1) Fit the rear part of the mounting section of the amplifier on a 35 mm 1.378 in width DIN rail.
(2) Press down the rear part of the mounting section of the unit on the 35 mm 1.378 in width DIN rail and fit the front part of the mounting
 section to the DIN rail.

How to remove the amplifier

(1) Push the amplifier forward.
(2) Lift up the front part of the amplifier to remove it.

Note: Take care that if the front part is lifted without pushing the amplifier forward, the hook on the rear portion of the mounting section is likely to break.

<When using screws with washers>

- Use M3 screws with washers for mounting. The tightening torque should be $0.5 \mathrm{~N} \cdot \mathrm{~m}$ or less.

Part description

Setting mode

- Setting mode appears after the MODE key is pressed for 2 sec. in RUN mode.

Setting item	Factory setting	Description
Teaching mode	LRCh	Threshold value can be set in 2-level teaching, limit teaching, or full-auto teaching.
Output operation setting	$\frac{L^{d}-\frac{d .0 n}{[D a r k-O N]}}{}$	Light-ON or Dark-ON can be set.
Timer operation setting	dELY non [Without timer]	Without timer, ON delay timer, or OFF delay timer can be set.
Timer setting	ond \quad in [ON-delay timer: 10 ms] ofd \quad is [OFF-delay timer: 10 ms	In case of setting ON-delay timer or OFF-delay timer in the timer operation setting mode, timer can be set. When timer is not set, this mode is not displayed.
Emission amount setting	$\frac{\text { Pct } \quad \text { ofF }}{[0 F F]}$	Setting for reduced intensity of emission amount is possible when the incident light intensity is saturated.
Emission frequency setting		In case of using the fiber heads in parallel, interference can be prevented by setting different emission frequency. However, when emission frequency 0 is set, interference cannot be prevented. Response time corresponds to emission frequency. For details, refer to "SPECIFICATIONS" on p. 132.

PRO mode

- PRO mode appears after the MODE key is pressed for 4 sec. in RUN mode.

Setting item	Factory setting	Description
Shift setting		Shift amount can be selected from 0 to 80% in the limit teaching. Select 0% when it is desired to set the present incident light intensity as a threshold value.
External input setting		Extemal input can be selected from emission halt, limit +, limit -, AUTO, and ECO.
Threshold value follow-up cycle setting (Note 1)		When incident light intensity exceeds threshold value, this mode can change the threshold value with each set cycle depending on variations of the incident light intensity. The follow-up shift amount is same as the one set in the shift setting mode. However, the threshold value is not stored.
GETA function setting (Note 2, 3)		Variations can be reduced by correcting the present incident light intensity in each amplifier to a target value. Target value to offset incident light intensity can be selected from 0 to 2,000 by 100 unit each. For example, if the target value is set to 2,000 when the incident light intensity is 1,500 , the incident light intensity becomes 2,000 .
$\begin{aligned} & \text { ECO } \\ & \text { setting } \end{aligned}$		It is possible to light up / turn off the digital display. When ECO setting mode is ON, the display turns off in 20 sec . approx. in RUN mode. To light up the display again, press any key for 2 sec . or more.
Digital display inversion setting	$\frac{\text { Eur off }}{\text { [OFF] }}$	Digital display can be inverted.
Threshold value margin setting		Margin for threshold value to the present incident light intensity can be checked. When there is no margin, it is possible to make the digital display blink. off: Set to "OFF": does not function. $\mathrm{Er}_{\mathrm{En}}$: Green blinks. rEd : Red blinks. 品: : Red and green blink.
Setting copy	$\frac{20]}{[\mathrm{NO}}$	The settings of the master side amplifier can be copied to the slave side amplifier. For details, refer to "Setting copy function."
Reset	$\frac{\sqrt{-5 E}}{[\mathrm{FO}]}$	Returns to default settings (factory settings.)

Notes: 1) If the incident light intensity becomes " 300 " or less, the follow-up operation stops. In that condition, threshold value [digital display (green)] blinks.
This function can be used when thru-beam type or retroreflective type fiber is applied to this product. If reflective type fiber is applied, the function cannot be used depending on use conditions.
2) If MODE key is pressed in RUN mode when GETA function is used, the incident light intensity before setting GETA function is displayed on the red digital display for 2 sec . approx.
3) When GETA function is used in saturation of incident light intensity (4,000 or more,) " HRrd" is indicated on the red digital display. Correction value is up to 4,000 .

Setting copy function

- This can copy the settings of the master side amplifier to the slave side amplifier.
- Be sure to use the setting copy function between the identical models (Between FX-10■ models or FX-102ם models).
This function cannot be used between different models.
- Only one sensor can be connected on slave side with a master side sensor for the setting copy function.
- Threshold value, output operation setting, timer operation setting, timer setting, light-emitting amount setting, shift setting, ECO setting, digital display inversion setting, and threshold value margin setting can be copied.

<Setting procedures>

(1) Set the setting copy mode of the master side amplifier to "Copy sending ON", and press the MODE key so that
 sensor is in copy ready state. For the setting method, refer to "Operation guide".
(2) Turn off the master side amplifier.
(3) Connect the master side amplifier with the slave side amplifier as shown below.

Color code of cable with connector

(4) Turn on the master side amplifier and the slave side amplifier at the same time. (Note)
(5) "[- [ru" is shown on the green digital display of the master side amplifier and 4-digit code is shown on the red digital display of it, then the copying starts. During copy communication, "[ald" is shown on the green digital display of the slave side amplifier, and the ongoing copy communication indicator (" $:$
" \rightarrow "! " \rightarrow "! ! \rightarrow " $(1,!$ ") is displayed on the red digital display.
(6) When the copying is completed, " Ind" is shown on the green digital display of the slave side amplifier, while the 4-digit code (the same code as the master side amplifier) is shown on the red digital display of it.
(7) Turn off the power of the master side amplifier and the slave side amplifier and disconnect the wire.

* If copying the settings to another amplifier repeatedly, follow the steps (3) to (7).

Note: Take care that if the power is not turned on at the same time, the setting contents may not be copied.
<To cancel the setting copy mode of the master side amplifier>
(1) While the slave side amplifier is disconnected, turn on the power of the master side amplifier.
(2) Press the MODE key for 2 sec . approx.

PRECAUTIONS FOR PROPER USE
Refer to p．986～for general precautions，and to the＂Operation Guide＂or＂SUNX website＂ （http：／／www．sunx．com）for details pertaining to operating instructions for the amplifier．

Quick setting function

－Settings for＂output operation＂，＂light－emitting amount＂， ＂timer＂，and＂emission frequency＂are possible simply by selecting a setting number．
－The quick setting function makes it possible to set the content of the SET Mode（output operation，timer operation，amount of light emitted，and frequency of light emitted）simply by selecting a setting number．
－While in the RUN Mode，pressing and holding both the ON key（ \triangle ）and OFF key（回）simultaneously for 2 seconds will switch to the quick setting function．
＜Table of quick setting numbers＞

No．	Output operation	Emission amount setting	Timer
－ 1787	D－ON	OFF	non
－ 218	D－ON	ON	non
－ 120	D－ON	OFF	ofd 10 ms
－ 13 －	D－ON	ON	ofd 10 ms
－ 214	D－ON	OFF	ofd 40 ms
－95－	D－ON	ON	ofd 40 ms
－ $25-$	D－ON	OFF	ond 10 ms
－ 173 －	D－ON	ON	ond 10 ms
－ 208 －	D－ON	OFF	ond 40 ms
－ 190	D－ON	ON	ond 40 ms
－ 110	L－ON	ON	ond 40 ms
－ 11 －	L－ON	OFF	ond 40 ms
－ $12{ }^{3}$	L－ON	ON	ond 10 ms
－13－	L－ON	OFF	ond 10 ms
－ 117	L－ON	ON	ofd 40 ms
－ $15-$	L－ON	OFF	ofd 40 ms
－16－	L－ON	ON	ofd 10 ms
－ 178	L－ON	OFF	ofd 10 ms
－ 18 －	L－ON	ON	non
－19－	L－ON	OFF	non

Code setting function

－Settings for＂output operation＂，＂timer＂，＂emission amount＂，＂emission frequency＂，＂ECO＂，＂external input＂， and＂shift amount＂are possible by selecting codes discretionary．
－The code setting function makes it possible to set the output operation，timer operation，amount of light emitted， frequency of light emitted，ECO setting，external input， and amount of shift by selecting a code of one＇s choice．
－While in the RUN Mode，pressing and holding both the ON key（回）and OFF key（回）simultaneously for 4 seconds will switch to the code setting function．

＜Code table＞

			EII		979			
	1st	digit		nd digi			digit	4th digit
Code	Output	Timer	Emission amount	Emis Freq	ion ency	ECO	Extemal	Shift
			setting	FX－101ם	FX－102ם			
0		non		0	1		E＿oF	5 \％
！		ond 10 ms		1	2		Limit［＋］	10 \％
3	D－on	ond 40 ms	OFF	2	3	OFF	Limit［－］	15 \％
3		ofd 10 ms		3	4		Auto	20 \％
4		ofd 40 ms		0	1		Eco	25 \％
5		non	ON	1	2		E＿oF	30 \％
5		ond 10 ms	ON	2	3		Limit［＋］	35%
7	L－on	ond 40 ms		3	4	ON	Limit［－］	40 \％
8		ofd 10 ms					Auto	45 \％
9		ofd 40 ms					Eco	50 \％

Notes：1）When the present setting is out of the code setting range，＂－＂is shown．
When＂＂＂is selected，the set content of the digit is not changed．

Others

－Do not use during the initial transient time（ 0.5 sec ．）after the power supply is switched on．
－EEPROM is adopted to this product．It is not possible to conduct teaching 100 thousand times or more，because of the EEPROM＇s lifetime．

CN-14A-C2 is attached FX-101(P)-CC2 / FX-102(P)-CC2

- Length L

Model No.	Length L
CN-14A(-R)-C1	$1,000 \quad 39.370$
CN-14A(-R)-C2	$2,000 \quad 78.740$
CN-14A(-R)-C3	$3,000118.110$
CN-14A(-R)-C5	$5,000196.850$

[^0]: Selection

